Fuzzy Matching Software Reviewed and Compared

Results from an independent university study compare the highest performing fuzzy matching software.

fuzzy matching software accuracy comparison table

The above chart reviews and compares various fuzzy matching software tools. An independent study found that Data Ladder’s fuzzy matching software outperformed several major companies such as IBM and SAS.

Note – Other software companies offering fuzzy matching tools scored lower on the study, including QualityStage, FEBRL, The Link King, FRIL, LINKS, HDI, BigMatch, and CDL-python-lite.

Fuzzy Matching Software: Definition 

Fuzzy Matching is defined as the process of identifying records on two or more datasets that refer to the same entity across various data sources such as databases and websites. fuzzy matching is required when combining data sets that don’t have a common identifier, such as an identification number. It can be performed for different purposes, such as data collation or building lists. Identifying and correcting common data quality issues is a challenge for most organizations, regardless of their size. For accuracy, both the number of found matches vs. possible matches, and the number of false matches were taken into account. This is an essential part of evaluating match accuracy.

Ranked Fastest and Most Accurate Fuzzy Matching Software – DataMatch Enterprise


The clear winner was DataMatch Enterprise, Data Ladder’s fast and accurate fuzzy matching software. Through proprietary fuzzy matching algorithms, Data Ladder’s DataMatch software suite helps the user:

-Detect and link records within and between datasets with multiple customizable fuzzy matching and phonetic matching techniques

-Import and export from Oracle, SQL Server, MySQL, Excel, Access, Text Files, ODBC, and other file types

-Clean data with Data Ladder’s special libraries on nicknames, abbreviations, states, advanced pattern recognition and more

-Parse addresses, email, and other data with customizable parsing tools

-See graphical reports on the number of records with potential linkages

-All trials include a Free consultation with our fuzzy matching software experts

-Interact with your data in a visual and customizable interface

How Fuzzy Matching Software Helped Organizations Improve Data Quality

With the substantial growth in data linkage activities in industries such as healthcare and education over the last several years, there has been increasing demand for high performing linkage software tools. West Virginia University was recently tasked with assessing the long-term impacts of certain medical conditions on patients over an extended period of time. Through using Data Ladder’s fuzzy matching software, researchers were able to link two groups of records together to make the determination on whether previous medical conditions affected long-term health and patient care.

Data Ladder also worked with Zurich Insurance on their fuzzy matching activities. In the insurance industry, it is critical to have payee names aggregate and match for the functioning of various payment processes. The constant need to monitor data requires clean, usable data due to the stringent requirements of the industry.

Read some of Data Ladder’s case studies across various industries.